Transport and Mixing in the Summer Subtropical UT/LS

Eric Ray, Karen Rosenlof and Erik Richard NOAA Aeronomy Laboratory

Steve Wofsy, Bruce Daube, Christof Gerbig, Irene Xueref Harvard University

Max Lowenstein, Hans-Jurg Jost, Jimmie Lopez NASA-Ames

Brian Ridley
NCAR

Robert Herman

Jet Propulsion Laboratory

Outline

- Brief overview of large-scale UT/LS meteorology.
- Midlatitude convection and subsequent isentropic mixing in the lower stratosphere.
- Very preliminary mixing results...

NCEP Geopotential Height 150 hPa

NCEP Potential Vorticity 355 K

Back Trajectories July 3

Ozone Profile July 9, 2002

Schematic of UT/LS in early July

Ozone Correlations July 9

Schematic of Midlat Convection and Mixing

Mixing From Ozone vs. NOy July 9

CO₂ and CO vs. NOy July 9

Plume Mixing From Ozone vs. NOy and CO July 9

Fractions of Tropospheric Air in the Stratosphere

Comparison of Mixing Fractions

Summary

- Large scale UT/LS flow during first two weeks of CRYSTAL-FACE resulted in an extensive "wedge" of midlatitude LS underlying tropical LS in sample region.
- Midlatitude LS wedge contains an interesting mixture of midlatitude troposphere and lowermost stratosphere revealed by a number of measured tracers.
- Considerable fraction of tropospheric air in the midlatitude LS wedge region (up to 40%).

Future Work

- Further quantify the mixture of tropospheric air in the subtropical lower stratosphere using all of the available long-lived tracers during several early July flights.
- Pin down the convective tropospheric boundary condition by using tropospheric CO₂ estimates and back trajectories.